Rust Free Download Mac Os X

Rust Free Download Mac Os X Rating: 4,5/5 5319 reviews

Mac os x el capitan 10.11.6 dmg download is a built in apps OS version, so you don’t have to download and install any apps, it’s already there for you. The most used apps are installed such as Browser to surf the web, email sends such Gmail, Notebooks to write your notes, Photoshop to edit your photos, etc. Rust Admin Tool Free Business Mac. For more tips and tools for managing an enterprise Mac fleet, download InfoWorlds free Business Mac Deep Dive PDF special report today. See InfoWorlds slideshow tour of Mac OS X Lions top 20 features and test your Apple smarts with our Apple IQ test: Round 2.

  1. Rust Free Download Mac Os X64
  2. Rust Free Download Mac Os Xp
  3. Rust Free Download Mac Os X 10.10

About

Do you have a favorite GTK application that you’d like to run on your Mac with a more Mac-like look and feel, with the menus up on the menu bar and standard Mac keyboard shortcuts like Command-Q? Perhaps you maintain a GTK application and want to expand your user base to Mac users who want a Mac experience, not a transplanted Unix experience?

Features

Linking with GTK’s Quartz backend connects your application to the Mac’s native display manager, keyboard, and pointing device. With a little extra code and gtk-mac-integration you can:

  • Integrate the Application’s menus with the Mac Menubar.
  • Manipulate your application’s dock tile.
  • Receive open events from Finder.
  • Find resources in your application bundle.

Requirements

There are a number of requirements that need to be met by your system before you can build for OSX. These are updated from time to time and kept on the live wiki.

Building

Building with jhbuild and the GTK-OSX modulesets, you can build your application and all of its dependent libraries with a single command.

All-in-one bundles

Good drama download for android. Bundling with the gtk-mac-bundler, an easily configured python program which creates an application bundle for you and populates it with your application executable and all of the dependent libraries from your GTK build, changing the installed names as needed to point inside the bundle.

Getting Started

First, make sure that your system meets the requirements as mentioned above, then download and run the installation script (gtk-osx-build-setup.sh). If your application already has a module, everything you need to build your application is handled by jhbuild. The build page has detailed instructions.

Success Stories

Some of the projects which have used GTK on Mac OS X have shared their experiences for all to see. If you have any feedback you would like to give about your experiences here, please contact us on the the users mailing list as mentioned below.

Mailing lists & web forum

Support for building, bundling, and the integration library is provided by a mailing list and a forum. Contributors may wish to subscribe to the developer’s mailing list as well.

Contributing

Bugs, patches and enhancements for building, integration, or bundling may be submitted to the gtk-mac-integration project on Gitlab. Bug reports on any other package, including GTK itself, should be submitted against that package, not gtk-mac-integration; the label for the Quartz backend is “macOS”.

Rust is a systems programming language focused on speed and safe concurrency, and which I’ve been using for personal projects heavily since the 1.0 release last year. Most of these projects have been replacements for existing scripts in my workflows or new command line tools, but I wanted to create a Mac application and determine if it would benefit from Rust’s memory efficiency, safety, and robust library ecosystem.

I’ve done iOS and Mac application development for many years and it's worth noting that the hardest part of Cocoa development has always been learning the frameworks rather than the languages. This experiment is about applying Cocoa and Rust knowledge to create something safe and yet easy to work with.

Getting started with Cocoa crates

There are already crates for working with the Objective-C runtime, such as the [CODE]objc[/CODE] and [CODE]block[/CODE] crates, which are for using the runtime directly and interfacing with Apple’s block extensions respectively. The [CODE]objc[/CODE] crate in particular provides the [CODE]msg_send![/CODE] macro, which is a basic interface to messaging Objective-C objects. Here’s an example of creating an [CODE]NSObject[/CODE]:

-- CODE language-rust --
unsafe {
let cls = Class::get('NSObject').unwrap();
let obj: *mut Object = msg_send![cls, new];
}

The [CODE]cocoa[/CODE] crate builds on this to provide an interface to using frameworks including AppKit for drawing windows and views onscreen. It also has an interesting take on implementing Objective-C classes in that translates them to traits which are implemented by a generic [CODE]NSObject[/CODE] type. This snippet creates an app and a window, and presents it on screen:

-- CODE language-rust --
unsafe {
let _pool = NSAutoreleasePool::new(nil);
let app = NSApp();
app.setActivationPolicy_(NSApplicationActivationPolicyRegular);
let window = NSWindow::alloc(nil).initWithContentRect_styleMask_backing_defer_(
NSRect::new(NSPoint::new(0., 0.), NSSize::new(200., 200.)),
NSTitledWindowMask as NSUInteger,
NSBackingStoreBuffered,
NO
).autorelease();
let title = NSString::alloc(nil).init_str('Hello World!');
window.setTitle_(title);
window.makeKeyAndOrderFront_(nil);
app.run();
}

Pretty cool, though as is, the entire interface is unsafe, missing the hopeful goal of the experiment. This approach could still be interesting when writing the application core code in Rust, and then packaging it using Cocoa bindings.

Wrapping Cocoa APIs in “safety”

Given those caveats, couldn’t we create Rust wrappers for Objective-C classes? Of course! After some trial and error, I had a base trait to use for wrapping and interacting with Objective-C objects:

-- CODE language-rust --
use objc::runtime::Object;
pub type Id = *mut Object;
pub trait ObjCClass: Sized {
/// Returns pointer to underlying objc object
fn ptr(&self) -> Id;
/// Creates an instance from an objc object pointer, failing
/// if the pointer is not an instance of the wrapped class
fn from_ptr(ptr: Id) -> Option<self>;</self>
/// The printed name of the class
fn class_name() -> &'static str;
/// Type-safe reference to an instance with a nil pointer
fn nil() -> Self;
/// Performs an `isKindOfClass` check to whether a particular
/// pointer is an instance of the wrapped class
fn ptr_is_class(ptr: Id) -> bool;
/// Change an instance of one class into another, failing if
/// the pointer is not an instance of the preferred class.
/// Useful for converting between inherited classes e.g.
/// NSDictionary to NSMutableDictionary.
fn coerce<t: objcclass='>(&self) -> Option<t> {</t></t:>
T::from_ptr(self.ptr())
}
/// Designate this instance as suitable for being released
/// once it is out of scope
fn autorelease(&self) -> Self;
/// Drop the Objective-C reference. The object is then invalid
fn release(&mut self);
}

Note that this creates a Rust object with a reference to an Objective-C object, but the overall effect is minimal as most interaction still happens in Objective-C runtime land.

/install-windows-xp-on-hp-mini-2140.html. Using this trait was most easily done creating a handy macro named [CODE]impl_objc_class[/CODE], and then wrapping the average class became easy! Here’s an example which wraps a few methods on [CODE]NSString[/CODE].

-- CODE language-rust --
const UTF8_ENCODING: NSUInteger = 4;
impl_objc_class!(NSString);
impl NSString {
/// Creates an `NSString` from a `str`.
pub fn from(content: &str) -> Self {
let ptr: *mut Object = unsafe {
let string: *mut Object = msg_send![class!('NSString'), alloc];
msg_send![string, initWithBytes:content.as_ptr()
length:content.len()
encoding:UTF8_ENCODING]
};
NSString { ptr: ptr }
}
/// The length of the string as measured in UTF-8 code points
pub fn len(&self) -> usize {
unsafe { msg_send![self.ptr, lengthOfBytesUsingEncoding:UTF8_ENCODING] }
}
}

The class can now be used directly, and without [CODE]unsafe[/CODE]:

-- CODE language-rust --
let greeting = NSString::from('hello');
assert_eq!(greeting.len(), 5);

Resources still need to be released (or auto-released, if applicable) when they are no longer needed, but classes became much easier to use. I explored some options such as implementing a [CODE]Drop[/CODE] trait to automatically discard Objective-C objects once the Rust reference goes out of scope, but this behavior is not always desirable, especially when working with references to applications and windows which are expected to stay for the life time of the application, or at least longer than the current scope.

Packaging Rust into an app

While we can use the snippets of the cocoa crate to run an executable, the executable is not packaged as an app bundle, which would be suitable for having an app icon, putting an app in the dock, or being registered as a default application (like being the mail client used for [CODE]mailto:[/CODE] links, for example). For that, we’d need to package the executable into an app bundle.

An easy way to create an app bundle which launches Rust code is to create a Cocoa app with a Rust and dependent app target. This requires a few steps in Xcode:

  • Create a new app using the Cocoa app template
  • Add a second “External build system” target to the application which creates the Rust binary
  • Add the second target to the default app target as a dependency
  • Add the rust executable as a bundled resource of the app target
  • Replace the default AppDelegate with a script to launch the Rust binary, something like this bit of Swift:

Rust Free Download Mac Os X64

-- CODE language-rust --
let task = Process()
task.launchPath = Bundle.main.path(forResource: 'my-rust-program', ofType: nil)
task.launch()
task.waitUntilExit()

I’ve created an example which shows all of these parts in action, adds an app icon, and pipes output from the Rust executable to the system console.

Conclusions

The initial results were less than ergonomic when using the existing Cocoa crate since the interface did not add additional safety, and perhaps removed some because the generic object type conformed to every Cocoa class trait. I could (and did) call the wrong methods on Cocoa class instances.

Writing my own layer of classes on top of [CODE]objc[/CODE] improved the latter, though it was more initial overhead to write wrappers before using classes, and still felt clumsy when converting between values in class clusters for example. There is potential for a “Rustier” crate for interfacing with Objective-C, or a generator which makes ergonomic method names. Despite this, I mapped a number of Objective-C classes by hand, and while my stylistic choices probably aren’t suitable for a general use library, Rust+Cocoa became very fast to use and iterate on ideas. The approach could be worth a try if you have reusable components in Rust to share with a Cocoa application, and have constructs unsuitable for use with the foreign function interface.

There’s more I could cover here about the experience, like how to declare your own Objective-C classes in Rust and implementing protocols, but that should be the topic of a later post.

Rust Free Download Mac Os Xp

I’ve made some longer examples demonstrating the snippets in this post as well as a general template usable for packaging a mac app, which is available on GitHub.

Rust Free Download Mac Os X 10.10

Thanks for reading!